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Abstract

Comparative analysis of two approaches for e/π identification based on the en-
ergy losses in the n-layered CBM TRD is presented.

We consider two approaches for e/π identification using the Transition Radiation
Detector (TRD) in the CBM experiment. They are based on the measurements of ioniza-
tion losses (dE/dx) for π (top plot) and e (bottom plot), including energy losses on the
transition radiation, in a one-layer TRD prototype: beam-test in GSI, p = 1.5 GeV/c,
February 2006 (Fig. 1). These measurements have been used for simulation of energy

Figure 1: Distributions of energy losses of π (bottom plot) and e (top plot), including the
transition radiation, in the TRD prototype: p = 1.5 GeV/c

losses by e and π during their passing through the n-layered TRD.
In the first approach, a method of ratio of likelihood functions is used for particles

identification: see, for example, [1, 2]. While applying the likelihood test to the problem
considered, the value

L =
Pe

Pe + Pπ

, Pe =
n∏

i=1

pe(∆Ei), Pπ =
n∏

i=1

pπ(∆Ei), (1)

is calculated for each set of energy losses, where pπ(∆Ei) is the value of the density
function pπ in the case when π loses energy ∆Ei in the i-th absorber, and pe(∆Ei) is a
similar value for e.

In order to calculate correctly the value of variable L, it is necessary to construct the
density functions which with a good accuracy must reproduce the distributions of energy
losses of π and e (Fig. 1).
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We have found that the distribution of ionizing energy losses of π is quite well
approximated by a log-normal function

f1(x) =
A√

2πσx
exp− 1

2σ2 (ln x−µ)2 , (2)

where σ is the dispersion, µ is the mean value, and A is a normalizing factor (Fig. 2), and

Figure 2: Approximation of the distri-
bution of pion energy losses in the TRD
prototype by a log-normal function (2)

Figure 3: Approximation of the distri-
bution of electron energy losses in the
TRD prototype by a weighted sum of
two log-normal functions (3)

electron energy losses are approximated with a high accuracy by a weighted sum of two
log-normal distributions (Fig. 3)

f2(x) = B

(
a√

2πσ1x
exp

− 1

2σ2
1
(ln x−µ1)2

+
b√

2πσ2x
exp

− 1

2σ2
2

(ln x−µ2)2
)

, (3)

here σ1 and σ2 are dispersions, µ1 and µ2 are mean values, a and b = 1 − a are the
contributions of the first and second log-normal distributions, correspondingly, and B is
a normalizing factor.

The distributions of L in cases when only π (top left plot) or only e (top right plot)
pass through the n-layered TRD with are presented in Fig. 4; the bottom plot shows a
summary distribution for both particles.

The efficiency of electrons registration is determined by the ratio of electrons selected
in the admissible region for the preassigned significance level α (first order error) to part
β of pions having hit in the admissible region (second order error).

In our case α value was set approximately equal to 10 %. In particular, the critical
value Lcr = 0.00035 corresponds to the significance level α = 10.24 %, thus, in the ad-
missable region there will remain 89.76 % of electrons. In this case, the second order error
β = 0.0274 %. Thus, the suppression factor of pions, which equals to 100/β, will make
up 3646.

The second approach is based on a successive application of two statistical criteria:
1) the mean value method, and 2) the ωk

n-test.
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Figure 4: Distributions of L in cases when only π (top left plot) or only e (top right plot)
pass through the TRD with n = 12 layers; the bottom plot is a summary distribution for both
particles

In the mean value method a variable

∆E =
1

n

n∑
i=1

∆Ei

is calculated, where n is the number of layers in the TRD.
Figure 5 shows distributions of ∆E for e (left top plot), π (right top plot), and a

summary distribution for both particles (bottom plot). It is clearly seen that the pion
distribution is quite well separated from the electron one. If we set the critical value ∆Ecr

= 6.3, then there will remain 90.62 % of e in the admissible region, and the admixture
of π identified as electrons β will form 0.055 %. Thus, the factor of π suppression will
constitute 1833.

This result could be significantly improved, if we apply the ωk
n-test to the events

selected in the admissible region [3, 4].
This test is based on the comparison of the distribution function F (x) corresponding

to a preassigned null-hypothesis (H0) with empirical distribution function Sn(x):

Sn(x) =

⎧⎨
⎩

0, if x < x1;
i/n, if xi ≤ x ≤ xi+1, i = 1, . . . , n − 1.

1, if xn ≤ x,
(4)

Here x1 ≤ x2 ≤ . . . ≤ xn is the ordered sample (variational series) of size n constructed
on the basis of observations of variable x.

Energy losses for π have a form of Landau distribution. We use it as H0 to transform
the initial measurements to a set of variable λ:

λi =
∆Ei − ∆Ei

mp

ξi

− 0.225, i = 1,2,...,n, (5)
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Figure 5: Distributions of variable ∆E
for e (left top plot), π (right top plot);
summary distribution (bottom plot)

Figure 6: Distributions of ω8
12 values for

π (top left plot) and e (top right plot)
events; summary distribution (bottom
plot)

∆Ei – energy loss in the i-th absorber, ∆Ei
mp – the value of most probable energy loss,

ξi = 1
4.02

FWHM of distribution of energy losses for π (see details in [2]).
The obtained λi, i = 1, ..., n are ordered due to their values (λj, j = 1, ..., n) and

used for determination of ωk
n

ωk
n = − n

k
2

k + 1

n∑
i=1

{[
i − 1

n
− φ(λi)

]k+1

−
[

i

n
− φ(λi)

]k+1
}

, (6)

where the values of Landau distribution function φ(λ) are calculated using the DSTLAN
function (CERNLIB library).

Figure 6 shows the distributions of ω8
12 values for π (top left plot) and for e (top

right plot: here all values of ω8
12 > 15 were set equal to 15); a summary distribution is

presented in the bottom plot.
Table 1 presentss the results of comparison of the given methods: α is part of lost

electrons, β is the fraction of pi identified as e, pion suppression factor equals 100/β.

Table 1: Comparison of the given methods

method α,% β,% suppression of pions
likelihood 10.24 0.0274 3646

mean value 9.38 0.055 1833
mean value + ωk

n 10.54 0.02857 3500

These results demonstrate that, under the condition of loss of approximately 1 % of
electrons, the application of the ωk

n-test to the events selected in the admissible region
permits us to increase the factor of pions suppression in almost two times. Thus, we have
achieved the result which is very close to the limit value obtained by the likelihood test.
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The likelihood functions ratio test could be related to Neiman-Pirson criterion, which
is the most powerful criterion for testing the hypothesis H0 against the alternative hy-
pothesis H1 [1]. Therefore, for the given significance level α = 10.24 % the value of
β = 0.0274 % could be considered as minimally possible (which corresponds to the maxi-
mum factor of pions suppression).

The bottleneck of this method is that the distribution of energy losses for electrons is
strongly dependent on their momenta. At the same time, the distribution of pions energy
losses weakly changes.

The second approach does not run into this issue, because for application of the
ωk

n-test, it is necessary to know only the distribution of pion energy losses. This combined
approach is simpler from a practical application viewpoint, and, as it has been demon-
strated, it may provide the power close to the limit value – for α = 10.54 % the value of
β = 0.02857 %, which corresponds to the factor of pions suppression equal to 3500.
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